Linear Algebra, Winter 2022
List 6
Eigenvalues, complex number intro
Let M be a square matrix. If

$$
M \stackrel{\rightharpoonup}{v}=\lambda \stackrel{\rightharpoonup}{v}
$$

with $\vec{v} \neq \overrightarrow{0}$ then the vector \vec{v} is called an eigenvector of M and the number λ is called an eigenvalue of M.

- The eigenvalues of M are exactly the numbers λ for which

$$
\operatorname{det}(A-\lambda I)=0
$$

- The determinant of M is exactly equal to the product of all its eigenvalues.

138. Find an eigenvector of $\left[\begin{array}{cc}7 & -5 \\ 0 & 8\end{array}\right]$ corresponding to the eigenvalue 8 . That is, find a non-zero vector $\left[\begin{array}{l}x \\ y\end{array}\right]$ such that $\left[\begin{array}{cc}7 & -5 \\ 0 & 8\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=8\left[\begin{array}{l}x \\ y\end{array}\right]$. $\left[\begin{array}{c}-5 \\ 1\end{array}\right]$ or any multiple of that
139. Find the eigenvalues of $\left[\begin{array}{cc}4 & 1 \\ -2 & 8\end{array}\right]$.
$\operatorname{det}\left(\left[\begin{array}{cc}4-\lambda & 1 \\ -2 & 8-\lambda\end{array}\right]\right)=(4-\lambda)(8-\lambda)-(1)(-2)=\lambda^{2}-12 \lambda+34$.
The roots of $\lambda^{2}-12 \lambda+34$ are $6+\sqrt{2}$ and $6-\sqrt{2}$.
140. (a) Find the eigenvalues of $\left[\begin{array}{ll}2 & 1 \\ 7 & 8\end{array}\right] \cdot \operatorname{det}\left(\left[\begin{array}{cc}2-\lambda & 1 \\ 7 & 8-\lambda\end{array}\right]\right)=0$ gives $\lambda^{2}-10 \lambda+$ $9=0$, so the eigenvalues are 9 and 1 .
(b) Find the eigenvectors of $\left[\begin{array}{ll}2 & 1 \\ 7 & 8\end{array}\right]$. For $\lambda=9$, we want $\left[\begin{array}{ll}2 & 1 \\ 7 & 8\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=9\left[\begin{array}{l}x \\ y\end{array}\right]$, so $\left[\begin{array}{c}2 x+y \\ 7 x+8 y\end{array}\right]=\left[\begin{array}{c}9 x \\ 9 y\end{array}\right]$. The solutions to $\left\{\begin{array}{c}2 x+y=9 x \\ 7 x+8 y=9 y\end{array}\right.$ are any multiple of $\left[\begin{array}{l}1 \\ 7\end{array}\right]$. For $\lambda=1$ we get any multiple of $\left[\begin{array}{c}1 \\ -1\end{array}\right]$.
141. (a) Find the eigenvalues of $\left[\begin{array}{cc}4 & 1 \\ -8 & 8\end{array}\right]$. $\operatorname{det}\left(\left[\begin{array}{cc}4-\lambda & 1 \\ -8 & 8-\lambda\end{array}\right]\right)=(4-\lambda)(8-\lambda)-(1)(-8)=\lambda^{2}-12 \lambda+40$.
The zeros of $\lambda^{2}-12 \lambda+40$ are $6+2 i$ and $6-2 i$.
$\forall(b)$ Find the eigenvectors of $\left[\begin{array}{cc}4 & 1 \\ -8 & 8\end{array}\right]$.
any multiple of $\left[\begin{array}{c}1+i \\ 4\end{array}\right]$ and any multiple of $\left[\begin{array}{c}1-i \\ 4\end{array}\right]$
142. Find the eigenvalues of $\left[\begin{array}{ccc}4 & 8 & 1 \\ 7 & 14 & 6 \\ 1 & 2 & 6\end{array}\right] \cdot 0$ and 5 and 19
143. If the matrix M satisfies

$$
M\left[\begin{array}{c}
2 \\
-2
\end{array}\right]=\left[\begin{array}{c}
-12 \\
12
\end{array}\right] \quad \text { and } \quad M\left[\begin{array}{l}
3 \\
3
\end{array}\right]=\left[\begin{array}{c}
24 \\
-6
\end{array}\right] \quad \text { and } \quad M\left[\begin{array}{l}
7 \\
2
\end{array}\right]=\left[\begin{array}{c}
21 \\
6
\end{array}\right],
$$

find the eigenvalues of M.
The middle equation is irrelevant because $[24,-6]$ is not parallel to $[3,3]$. The other two equations show that -6 and 3 are eigenvalues because $[-12,12]=$ $(-6)[2,-2]$ and $[21,6]=3[7,2]$.
144. Calculate the determinant of a 3×3 matrix whose eigenvalues are 19 , 1 , and -5 . Determinant $=$ product of eigenvalues $=-95$.
145. Expand $(2+3 a)(5-4 a) \cdot 10+7 a-12 a^{2}$
146. Re-write $(1+t)(8+3 t)$ in the form _ $+\ldots t$ if $t^{2}=10.8+11 t+3 t^{2}=38+11 t$

147. Re-write $(1+i)(8+3 i)$ in the form $\quad \ldots+i$, knowing that $i^{2}=-1$. $8+11 i+3 i^{2}=5+11 i$
148. Give the determinant of a matrix whose eigenvalues are...
(a) 4,3 , and 0 . 0
(b) $1-4 i, 1+4 i$, and $2 .(1-4 i)(1+4 i)(2)=34$
(c) 9 and $\frac{1}{4} \cdot 2.25$
149. Simplify each of the following: $i^{2}=\boxed{-1}, i^{3}=\boxed{-i}, i^{4}=1, i^{5}=\boxed{i}, i^{15}=\boxed{-i}$, $i^{202}=\boxed{-1}, i^{1285100}=1, i^{-1}=-i$.
150. Write the following in the form $a+b i$, where a and b are real numbers.
(a) $(-6+5 i)+(2-4 i)=-4+i$
(b) $(1+2 i)(2+3 i)=-4+7 i$
(c) $(-5+2 i)-(2-i)=-7+3 i$
(d) $(2-3 i)(2+3 i)=13$
(e) $(1+i)(2-i)(3+2 i)=7+9 i$
(f) $(1-2 i)^{3}=-11+2 i$
(g) $(-2 i)^{6}=-64$
(h) $(1+i)^{4}=-4$
151. Write $\frac{1+2 i}{2-3 i}$ in the form $a+b i$. (Hint: $\frac{1+2 i}{2-3 i} \times \frac{2+3 i}{2+3 i}$.)

Using $150(\mathrm{~b})$ and $150(\mathrm{~d}), \frac{(1+2 i)(2+3 i)}{(2-3 i)(2+3 i)}=\frac{-4+7 i}{13}=\frac{-4}{13}+\frac{7}{13} i$
If $z=a+b i$, where a and b are real numbers, then the real part of z is a, and the imaginary part of z is b (not $b i$).

The magnitude (or modulus) of $z=a+b i$ is the distance between $(0,0)$ and (a, b) on an $x y$-plane; it is written as $|z|$. The argument of z is the angle between the positive x-axis and the line from $(0,0)$ to (a, b); it is written as $\arg (z)$.
152. What is the real part of $(5+6 i)(2 i)$? -12
153. (a) Calculate the length of the hypotenuse of a right triangle whose legs have lengths 1 and $\sqrt{2}$.
(b) Calculate the distance between the points $(0,0)$ and $(1, \sqrt{2})$.
(c) Calculate the magnitude of the vector $[1, \sqrt{2}]$, often written $|[1, \sqrt{2}]|$.
(d) Calculate the magnitude of the complex number $1+\sqrt{2} i$, often written $|1+\sqrt{2} i|$. Every part is the same! Answer: 3
154. Compute $|2+7 i| . \sqrt{53}$
155. What is the magnitude of $\sqrt{11} \cos (\pi / 8)+\sqrt{11} \sin (\pi / 8) i$? $\sqrt{11}$
156. (a) What is the real part of $1-\sqrt{3} i$? 1
(b) What is the imaginary part of $1-\sqrt{3} i$? $-\sqrt{3}$ Note: not $-\sqrt{3} i$.
(c) Compute $|1-\sqrt{3} i| \cdot 2$
(d) Compute $\arg (1-\sqrt{3} i) \cdot-\pi / 3$
(e) Give values for r and θ such that $1-\sqrt{3} i=r(\cos (\theta)+i \sin (\theta)) . r=2, \theta=-\pi / 3$
157. Calculate each of the following:
(a) the real part of $2 i-7 .-7$
(b) the imaginary part of $(3+2 i)(5 i) .15$
(c) the imaginary part of 4.0
(d) the imaginary part of $i^{2} 0$
(e) the real part of $i^{2} \boxed{-1}$
(f) $\arg (-3 i)$. -90° or $-\frac{1}{2} \pi$ since we usually use $-\pi<\arg (z) \leq \pi$
(g) $\arg (5+5 i) .45^{\circ}$ or $\frac{1}{4} \pi$
(h) $\arg (5-5 i) .-45^{\circ}$ or $-\frac{1}{2} \pi$

Rectangular form: $a+b i$, or $a+i b$, or $b i+a$, or similar, where a and b are real numbers and usually are simplified. If a is zero, you can skip writing " $0+$ "..., and if $b=0$ you can skip writing ..." $+0 i$ ".
Polar form: $r \cos (\theta)+r \sin (\theta) i$, or $r(\cos \theta+i \sin \theta)$, or similar. Requires $r \geq 0$.
158. Re-write $10 \cos \left(-\frac{\pi}{4}\right)+10 \sin \left(-\frac{\pi}{4}\right) i$ without trig functions.

$$
\frac{10}{\sqrt{2}}-\frac{10}{\sqrt{2}} i
$$

159. Write each of the following in polar form.

That is, write each as __($\left.\cos \left(__{)}\right)+i \sin (\ldots)\right)$, where the angles for cosine and sine must be equal and the first blank must be positive.
(a) $1-\sqrt{3} i=2 \cos \left(-\frac{\pi}{3}\right)+2 \sin \left(-\frac{\pi}{3}\right) i$
(b) $-\sqrt{5}+\sqrt{15} i=\sqrt{20}\left(\cos \left(\frac{3}{4} \pi\right)+i \sin \left(\frac{3}{4} \pi\right)\right)$, see Task 3 from List 1
(c) $3+3 i=3 \sqrt{2}\left(\cos \frac{\pi}{2}+i \sin \frac{\pi}{2}\right)$
(d) $-3 i=3\left(\cos \frac{\pi}{2}+i \sin \frac{\pi}{2}\right)$
(e) $1+\sqrt{3} i=2\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right)$
(f) $2-2 \sqrt{3} i=4\left(\cos \frac{-\pi}{3}+i \sin \frac{-\pi}{3}\right)$
(g) $\frac{\sqrt{3}-i}{7}=\frac{2}{7}\left(\cos \frac{-\pi}{6}+i \sin \frac{-\pi}{6}\right)$
(h) $\sqrt{-1}=1\left(\cos \frac{\pi}{2}+i \sin \frac{\pi}{2}\right)$
160. Write $2+\sqrt{2} \cos (3 \pi / 4)+\sqrt{2} \sin (3 \pi / 4) i$ in both rectangular and polar form. $1+i=\sqrt{2} \cos (\pi / 4)+\sqrt{2} \sin (\pi / 4) i$
161. Write each number below in both rectangular and polar form.
(a)

$$
1+i=\sqrt{2}(\cos (\pi / 4)+i \sin (\pi / 4))
$$

(b)

$$
\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}=\cos (\pi / 4)+i \sin (\pi / 4)
$$

(c)

$$
\cos (7 \pi / 6)+i \sin (7 \pi / 6)=\cos (-5 \pi / 6)+i \sin (-5 \pi / 6)=-\frac{\sqrt{3}}{2}-\frac{1}{2} i
$$

(d)

$$
2(\cos (\pi / 6)+i \sin (\pi / 6))=\sqrt{3}+i
$$

(e)

$$
3(\cos (3 \pi / 4)+i \sin (3 \pi / 4))=\frac{3}{\sqrt{2}}+\frac{-3}{\sqrt{2}} i
$$

(f)

162. On a complex plane, draw the number(s)...
(a) $4-i$

(b) $\sqrt{2}-\sqrt{2} i$ and $-\sqrt{2}+\sqrt{2} i$

(c) $\frac{1+i}{\sqrt{2}}$ and $\frac{-1-i}{\sqrt{2}}$

(d) $-\frac{19}{29}-\frac{25}{29} i$

(e) $3-i$ and $3+i$

(f) $\frac{1-25 i}{6}$

163. Re-write $\left(q n^{s t}\right)^{3}$ in the form $_n-t \cdot q^{3} n^{3 s t}$
164. Re-write $\left(r e^{i \theta}\right)^{3}$ in the form $_e^{-i} \cdot r^{3} e^{3 \theta i}$

